
Specification and Evaluation of Polymorphic
Shellcode Properties Using a New Temporal

Logic

Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

No Institute Given

Abstract. It is a well known fact that polymorphism is one of the greatest
find of malicious code authors. Applied in the context of Buffer Overflow
attacks, the detection of such codes becomes very difficult. In view of this
problematic, which constitutes a real challenge for all the international
community, we propose in this paper a new formal language (based on
temporal logics such as CTL) allowing to specify polymorphic codes, to
detect them and to better understand their nature. The efficiency and the
expressiveness of this language are shown via the specification of a variety
of properties characterizing polymorphic shellcodes. Finally, to make the
verification process automatic, this language is supported by a new IDS
(Intrusion Detection System) that will also be presented in this paper.

Key words: Polymorphic Shellcodes, Formal Methods, Temporal Logics,
Intrusion Detection.

1 Introduction

Statistics provided by the NVD (National Vulnerability Database) [7] and based
on US-CERT alerts [14] reveal that the most common vulnerabilities are Buffer
Overflow. Intuitively, a Buffer overflow is a kind of programming error that occurs
when a physical input (memory space) receives a large and unexpected value.
Attacks that exploit such vulnerabilities, which are mainly due to programmer’s
carelessness, can cause serious problems. For example, they can cause the crash
of a machine (Denial of Service) and, even worse, they can lead the attacker to
get the complete control of the targeted machine. The most famous example of
the Buffer Overflow problem is related to the Ariane 5 [33] space launcher that
crashed shortly after the takeoff in 1996. It was discovered later that the origin
of the problem was due to a 16-bit program that could not recognize and use a
64-bit input (Integer Overflow).

Several techniques and tools [10, 19, 22] have been proposed during last years to
detect Buffer Overflow attacks. In spite of their great contribution in this field,
they are still far from solving the problem. This is due to the subtlety and the
complexity of the problem on the one hand, and the remarkable evolution of
tools and techniques allowing to discover and exploit these kind of flaws on the
other hand. Flawfinder [2], Rats [11], and Retina [12] are examples of source code
scanner allowing to detect security flaws. Available platforms such as Nessus [8]

2 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

and Metasploit [5] allow to perform various intrusion tests. However, the real
revolution in the world of Buffer Overflow attacks comes undoubtedly from the
techniques of shellcode obfuscation, which are more and more sophisticated. Issued
from the viral scene, polymorphism (payload encoding) is the last find of malicious
code authors and can be applied to shellcodes as well. As a result, the malicious
code is different at each time making obsolete pattern matching based techniques.
Clet team claim that their polymorphic shellcode engine [24] can even defeat Data
Mining based IDSs. The reading of [29], which deals with new categories of worms,
that mutate and take form according to statistics elaborated on the flow analysis,
gives some shivers.

Most of recent systems [16, 40, 44] proposed to detect polymorphic shellcodes are
based on some observations (particular patterns and/or behaviors), and the whole
detection mechanism is based on these observations. Their interaction with end-
users are reduced to the definition of a few parameters limiting their detection
capabilities. Formal language-based detection approaches allow to overcome these
limitations. Indeed, in such approach, the end-user can express his own observa-
tions. In this paper, we propose a new formal language (based on temporal logics)
for the specification of a large variety of properties characterizing polymorphic
shellcodes. Our intention is to verify these properties against a model (traffic
abstraction). More precisely, we want to check the satisfaction relation M |= φ,
whereM is a model representing an abstraction of the audit trail, and φ a formula
characterizing a polymorphic shellcode property. The simplicity, the expressive-
ness, and the efficiency of the proposed language are shown via different examples
given in this paper. This language is also supported by an IDS prototype making
the detection step automatic as it will be shown in this paper.

The remainder of this paper is organized as follows: Section 2 describes Buffer
Overflow exploits and presents obfuscation techniques allowing to hide malicious
payload in Buffer Overflow attacks. Section 3 presents the model against which
the properties will be checked. Section 4 introduces LTL and CTL temporal logics
and presents the syntax and semantics of the proposed logic. Section 5 presents
properties characterizing polymorphic shellcodes. Section 6 describes the IDS-
Logic prototype. Section 7 evaluates the efficiency of the proposed properties
to detect polymorphic shellcodes. Section 8 discusses related work, and finally,
some concluding remarks on this work are ultimately sketched as a conclusion in
Section 9.

2 Polymorphic Shellcodes

In this section, we briefly present Buffer Overflow attacks together with common
obfuscation techniques used to hide the malicious payload and specially polymor-
phic techniques (payload encryption).

Title Suppressed Due to Excessive Length 3

2.1 Exploiting Buffer Overflow Vulnerabilities

Buffer Overflow attacks were popularized by Aleph1 in [17]. In this section, we
explain how to exploit Buffer Overflow vulnerabilities through the vulnerable code
example (vuln.c) given hereafter:

. . .
int func(char *srcbuff)
{
char destbuff[100];
strcpy(destbuff, srcbuff);
return 0;
}
. . .

In vuln.c, the strcpy() function does not check if the destination buffer (destbuff)
is big enough to contain the data of the source buffer (srcbuff). Therefore, destbuff
can be overflowed. To avoid this, it is sufficient to replace strcpy() function by its
alternative form strncpy().

srcbuff

EIP

EBP

dstbuff

srcbuff

RET

Malicious
code

Before strcpy() call After strcpy() call

Fig. 1. Memory Organization

Fig. 1 represents the program vuln in memory before and after the call of the
strcpy() function. In order to exploit vuln program, one can inject in memory a
malicious code (e.g. shellcode /bin/sh) and overwrite EIP pointer with a return
address (RET) that points to the beginning of the malicious code. Thus, when the
function func(char *) returns, the execution flow is redirected to the malicious
code: the shellcode is executed. Note that in a remote Buffer Overflow attacks,
we don’t know exactly the memory address where the malicious code is stored.
However, this address can be estimated by reproducing the same environment

4 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

according to the target machine (OS/Architecture/Verion of the vulnerable ap-
plication). In order to compensate the return address estimation error, a sequence
of nop instructions (0x90) is added to the beginning of the payload. A nop in-
struction performs a null operation. Thus, if the execution flow is redirected to
the NOP section, these instructions will be executed until they reach the mali-
cious code. Also, in order to ensure that the EIP pointer is overwritten with the
estimated value, the RET address is repeated several times after the malicious
code. The malicious payload has therefore the structure given in Fig. 2.

NOP Shellcode RET

Fig. 2. Classical Payload

Note that a long sequence of nop instructions, a repeated return address, and
some byte-sequences in shellcodes (e.g. string “/bin/sh”) are characteristics of
Buffer Overflow attacks, and therefore it is trivial for an IDS to detect the ma-
licious payload given in Fig. 2. However, malicious code authors have developed
several techniques allowing to obfuscate the malicious payload and in particular
to hide the shellcode.

2.2 Shellcode Obfuscation Techniques

In this section, we present common obfuscation techniques used by hackers, and
explain how these techniques can be applied to build up polymorphic shellcodes.

Obfuscation Techniques.

• Instruction Insertion: consists in inserting junk instructions/bytes between
the relevant part of the shellcode.

• Code Transposition: consists in changing the order of instructions.

• Register Renaming: consists in changing the name of the used registers. For
instance, inc %eax and inc %ebx have different opcodes, and therefore
replacing eax by ebx will produce different byte-sequences in shellcodes.

• Instruction Substitution: consists in replacing some instructions by their se-
mantically equivalent ones. For instance, the instruction add %eax, 2 can be
substituted with two instructions inc %eax. Note that for some particular
instructions these substitutions are not possible. For instance, the instruction
int has no equivalent.

• Alphanumeric Instructions: consists in using ASCII opcodes. Non-alphanum-
eric instructions in an alphanumeric communication is suspicious. Alphanu-
meric shellcodes [39] are useful for hackers when the target service accepts
only alphanumeric inputs.

Title Suppressed Due to Excessive Length 5

• Polymorphism: consists in ciphering the shellcode and attached to it a deci-
pher routine which is different from one attack to another (e.g. by applying
metamorphism techniques such as instruction substitution and register re-
naming). Thus, when the malicious code is executed, the decipher routine
is launched first to recover the original form of the shellcode and then the
control is given to this code. The literature records many automatic and
polymorphic shellcode engines. The most popular are ADMmutate [28], Clet,
JempiScode [41], and those proposed by the Metasploit framework.

Polymorphic Shellcode Anatomy. Issued from the viral scene, polymorphism
is the last find of malicious code authors and can be applied to shellcodes as well.
As a result, the malicious code is different at each time making obsolete pattern
matching based techniques. In the case of Buffer Overflow attacks, a polymorphic
payload has generally the structure given in Fig. 3.

FAKE_NOP Decipher routine Ciphered shellcode PAD RET

Fig. 3. Polymorphic Payload

A polymorphic payload is made up of the following parts:

• FAKE NOP (NOP replacement instructions): instead of nop instruction, one
can use any other one-byte instruction which has no significant effect (e.g. inc
%eax, dec %eax). The only constraint is to reach the decipher routine with-
out errors. The FAKE NOP list used by ADMmutate engine contains about
fifty instructions. Clet engine uses alphanumeric instruction list to build up
the FAKE NOP section. However, these lists do not present a large range of
choices, and FAKE NOP can be easily detected by any IDS maintaining sim-
ilar lists. One solution is to extend these lists with several-bytes instructions
that satisfy the following condition: suffix and arguments of instructions must
be instructions themselves. Thus, it is possible to read valid instructions and
reach the decipher routine without errors. The tool ecl-poly [27] allows to
generate such FAKE NOP instructions.

• Decipher Routine: shellcode encryption is based on simple reversible opera-
tions (e.g. add/sub, rol/ror, xor). In order to have a completely polymorph
code, it is imperative that decipher routine code is different at each time. To
achieve this goal, metamorphic obfuscation techniques are used. For example,
Clet engine applies instruction substitution and register renaming techniques
in order to hide the decipher routine. ADMmutate uses instruction substitu-
tion and instruction insertion techniques.

• Padding Zone: this zone is used to pad the empty spaces between the shellcode
and the return address. This zone was exploited cleverly by Clet team. It is

6 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

about an original idea consisting in filling the padding zone in such a way
that the result looks like a normal traffic in terms of probability distribution.

• Return Address: currently, there is only one technique to hide the return
address. It consists in varying, from one attack to another, the low-weight
bits (1 byte) of the return address.

In [20], we can find several program obfuscation techniques which could be applied
to polymorphic shellcodes.

3 Model

One of the basic steps of intrusion detection is the audit trail analysis. It allows to
record and analyse some particular actions that have been performed on a system
during a period of time. An example of these analyses is to make detection of
particular sequence of events characterizing an attack signature.

Almost all related works such as [26, 32] use a trace-based model (i.e. linear
model), where a trace is defined as a sequence of events collected from an au-
dit source (e.g. network, host). In the sequel, a trace is denoted by τ , an event is
denoted by e and we use the following notations:

If:

τ = e1, e2, ..., ei, ei+1, ..., en

then :

τ [i] = event ei
τi = suffix ei, ei+1,en

In case of network source, event ei represents the ith packet of the trace, where a
packet is specified by a set of fields (protocol, dport, daddr, . . .) as following:

Packet = fd1, fd2, . . . , fdn

with:

Packet.fdi = content of the field fdi

Although that the level of traffic abstraction presented above is enough to detect a
large variety of attack (e.g. IP Spoofing, Scan, Fragment attacks) using temporal
logics (e.g. LTL, ADM), many others attacks require a more detailed model. In
particular, to detect some polymorphic shellcodes, a deep analysis of the body
field (i.e. Packet.body) is necessary. For that reason, we choose to abstract the
body field not by a sequence of bits but by a CFG graph (Control Flow Graph)
as explained hereafter.

The detection of malicious codes is principally based on the body field part. The
simple fact of considering the content of this field as a sequence of bits allows
us to identify some attacks. For example, we can analyze this field to detect the

Title Suppressed Due to Excessive Length 7

return address or some invariant bits sequence between several mutation of a
polymorphic shellcode. However, many polymorphic shellcodes can easily escape
from being discovered using such analysis. For that reason, several solutions (e.g.
APE [44], STRIDE [16], HDE [37]) have recourse to code disassembly to better
analyze the nature of malicious codes. As a result, many interesting observations
have been made (e.g. invariance of the decipher routine structure). Therefore, in
order to take advantage of these observations, we need to refine our trace-based
model and specially to refine the representation of the body field content. At first
glance, we can be tempted to use a linear model (a sequence of instructions) to
represent disassembled code of the body field part. However, this structure has
two major drawbacks:

• Malicious code authors can insert junk instructions between the relevant parts
of the code and use jmp instructions to jump over junk bytes. Junk data allows
to hide the shellcode from detection engines which perform linear disassembly.

• Some shellcode obfuscation techniques use jmp instructions to jump into the
middle of other instructions. This technique well-known as PEX, and issued
from the Metasploit framework, is used to hide in particular the decipher
routine.

In order to overcome these disadvantages, it is necessary to follow the execution
trace. The following of all possible paths (case of conditional jump instructions:
jne, jz, etc.) leads to an arborescent model which corresponds to a CFG graph.
Moreover, the statistical study done for Clet, ADMmutate and JempiScode gen-
erated code, leads us to the same conclusion as given in [31]. These engines being
automatic, it results that some parts of the generated code are presented in the
vast majority of the cases according to the same structure (see Fig. 7). So, it is
interesting to specify some properties related to such structure. Therefore, we will
use an arborescent model rather than a linear one as an auxiliary representation
of the body field content. Now, a packet is represented as follows:

Packet = fd1, fd2, . . . , fdn,MCFG(pos)

where MCFG(pos) is an arborescent model associated with the CFG graph. It
records events related to packet-data disassembly which is performed from the
position pos. This choice is motivated by the fact that the content of the body
field contains, in the case of malicious code, a data region which doesn’t corre-
spond to an executable code (e.g. HTTP header). Disassembly of non-code regions
may then have an influence on the CFG graph. The ideal thing would be to per-
form disassembly from the first instructions of the NOP section. We can consider
here, CFG(pos) as a function that generates the CFG graph corresponding to the
disassembly of the body field content starting from the position pos. However, cer-
tain properties do not require disassembly process. In order to be in accordance
with the given model, a possible solution would be to provide a negative value as
an argument to the CFG() function (e.g. CFG(-1) returns a single empty node).
Disassembly operation is potentially costly in intrusion detection. The fact of not
having to systemize this process is a considerable advantage.

8 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

Formally, a graph can be represented according to several models. Among these
are the Labelled Transition System [38] and the Kripke structure [30]. In the first
case configuration, emphasis is placed on the actions that the system can do,
whereas in Kripke structure, emphasis is placed on the atomic propositions that
are true in a state, rather on the actions that allow transitions from one state
to another. In our CFG graph, nodes are made up of sequence of instructions.
These nodes are interconnected through branch instructions. Therefore, it is more
suitable to use the Kripke structure as a model to represent a CFG graph, since
the relevant information is associated to nodes rather than to transitions between
these nodes. A path π in MCFG is a sequence of states:

π = s1, s2, . . . , si, si+1, . . . , sm

with (si, si+1) ∈→, for all i ∈ {1, . . . ,m}. “→” is the transition relation of the
Kripke structure.

Finally, we will use a linear model to represent the sequence of instructions at
node level. The sequence of instructions is defined as following:

σ = t1, t2, . . . , ti, . . . , tk

The event ti corresponds to the ith instruction. Likewise the case of a packet, an
instruction is represented as a set of fields (inst, opcode, . . .).

The proposed model can be summarized as shown by Fig. 4. TheMPacket model
represents the sequence of packets. MCFG is the model associated with the CFG
graph. Finally, MInst represents the sequence of instructions at node level.

Fig. 4. Model

4 Specification Language

This section introduces a language for the specification and detection of polymor-
phic shellcodes. Our intention is to propose a formal and appropriate language in

Title Suppressed Due to Excessive Length 9

order to specify a large variety of polymorphic shellcode properties, and then to
check them against the previously defined model.

Existing formal languages for properties specification [26, 32] are not dedicated
to polymorphic shellcodes. In [26], Ben Ghorbel et al. propose to use the ADM
logic [15] in order to specify attack signatures. ADM can be viewed as a special
variant of µ-calculus modal logic [42]. Initially designed for the specification of
electronic commerce properties, it is also appropriate for the intrusion detection
issue. In [32], Lesperance et al. use LTL for properties specification. The main
shortcoming of these two logics is that their constructs are interpreted over a
trace-based model, where a trace is a sequence of packets. As explained in the
previous section, this model is not enough complete to describe events related
to polymorphic shellcodes. However, we can extend these logics with the ability
to specify and check formulae against the proposed model. Compared to LTL,
the ADM logic is more complex. Therefore, we will use LTL in order to specify
properties and to check them againstMPacket model. Then, we will extend LTL in
order to allow the specification of formulae with regard toMCFG model. This can
be done by the use of an arborescent logic in an embedded manner to LTL. CTL
logic is the most appropriate one, as it represents the arborescent version of LTL.
This implies a certain homogeneity in the language that we propose. Moreover,
Kripke structure, used as model to represent a CFG graph, is often associated
with temporal logics such as CTL. Finally, in order to allow the specification of
formulae with regard to MInst model, we have to extend the CTL logic. This
can be done by the use of a linear logic in an embedded manner to CTL. To this
end, we will use again the LTL logic. Therefore, the proposed language is based
on LTL and CTL temporal logics. Before presenting our logic with its syntax and
semantics, let us give a brief introduction to LTL and CTL logics.

4.1 Temporal Logics

Linear Temporal Logic. LTL syntax is defined by the BNF-grammar given by
Table 1. The symbols ¬ and ∨ represent negation and disjunction, respectively. p
is an atomic proposition. Finally, X (NeXt) and U (Until) are temporal operators.

Table 1. LTL Syntax.

φ ::= p | ¬φ | (φ1 ∨ φ2) | Xφ | (φ1Uφ2)

LTL constructs are interpreted over a sequence of states σ. The formula Xφ is
satisfied at a state s0 in σ if φ is satisfied in the next state (s1). The formula
(φ1Uφ2) is satisfied at a state s0 in σ if φ2 is satisfied at a state sk (k > 0),
and φ1 is satisfied in all states si that precede sk (0 6 i 6 k). From temporal
operator U , we can derive two useful temporal modalities: F (φ) (Finally) and
G(φ) (Globally). Their formal definitions are given in Table 6. F (φ) is satisfied
by σ if there exists a state sk (k > 0) in σ that satisfies φ. G(φ) is satisfied by

10 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

σ if φ is satisfied at each state in σ. Table 2 gives the intuitive meaning of LTL
temporal modalities.

Table 2. LTL Temporal Modalities.

P P P P q

σ |= X(p) σ |= (p Uq)

P P P P P P

σ |= F (p) σ |= G(p)

Computational Tree Logic. CTL has the same syntax as LTL with the follow-
ing additional requirement: temporal operators (X, U , F and G) are prefixed by
path quantifiers A (All paths) or E (there Exists a path). CTL syntax is defined
by the BNF-grammar given by Table 3. Formulae such as AF (φ), AG(φ), etc.,
can be derived using the abbreviations given in Table 6.

Table 3. CTL Syntax.

φ ::= p | ¬φ | (φ1 ∨ φ2) | EX(φ) | EG(φ) | E(φ1Uφ2)

CTL constructs are interpreted over an arborescent model M (Kripke structure)
having as root a state s0. Table 4 gives the intuitive meaning of CTL temporal
modalities.

Table 4. CTL Temporal Modalities.

P

S0 S0

P

P

P

M, s0 |= EF (p) M, s0 |= EG(p)

S0

PP

P

S0

P

P

PP

P

PP

M, s0 |= AF (p) M, s0 |= AG(p)

Title Suppressed Due to Excessive Length 11

4.2 Proposed Logic

Syntax and Semantics. The syntax of our logic is defined by the BNF-grammar
given in Table 5.

Table 5. Syntax.

φ ::= [α] | [α].φ | (φ1Uφ2) | (φ1 ∨ φ2) | ¬φ MPacket

α ::= Ppacket | θ | (α1 ∨ α2) | ¬α Packet

θ ::=≺ ψ �| E(≺ ψ � .θ) | EG(θ) | E(θ1Uθ2) | (θ1 ∨ θ2) | ¬θ | bθcw MCFG

ψ ::= Pnode | β | (ψ1 ∨ ψ2) | ¬ψ Node

β ::= {Pinst} | {Pinst}.β | (β1Uβ2) | (β1 ∨ β2) | ¬β MInst

We note that:

Lφ = LTL([α])
Lθ = CTL(≺ ψ �)
Lβ = LTL

• LTL[α] means that states of theMPacket model are no longer verified through
classical LTL atomic propositions, but through more complex formulae given
by α-grammar.

• Similarly for CTL≺ ψ �, states of the MCFG model are verified through
formulae specified in ψ-grammar.

We have also introduced some slight modifications to LTL and CTL grammars:

• In the neXt formula, we are not only interested by the successor state, but
also by the current state (e.g. formula [α].φ).

• We have introduced a new formula to CTL (bθcw) that limits CFG graph
paths to a depth equal to w. This prevents from a potential infinite loop when
checking formulae of type E(θ1Uθ2).

Note that classical shortcuts such that ∧, →, ←, F (φ), G(φ), etc., can be used
with their usual meaning shown in Table 6.

The logic defines 3 types of atomic propositions: Ppacket, Pnode and Pinst that cor-
respond to Packet, Node and Instruction events (respectively). These propo-
sitions have all the same format: Name Operator Value. The term Name is
an element of fields list defined for each event. Operator is used for comparison,
and Value is a simple value or an interval of values.

• Atomic Proposition Ppacket: the set of fields to be checked is defined
through the proposition Name.

12 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

Name ::= protocol | saddr | sport | daddr | dport | flags | frags | body

• flags represents the set of TCP flags: urg, ack, push, rst, syn, and fin.

• frags represents the set of fragmentation fields: fo and mf.

Examples:
1. protocol = “tcp”

2. dport = 80, 8080, 8888

3. daddr = 10.10.10.0. . .10.10.10.254

4. flags = 010010 (syn and ack are set)

5. body = X + “/bin/sh” + Y

In the case of the last proposition, X and Y are variables. The “+” operator
enables the concatenation of two strings.

• Atomic Proposition Pnode: we associate to Node event two attributes: id
(node identifier) and size (number of instructions in a node).

• Atomic Proposition Pinst: Intel manual [3] defines the format of instruc-
tions. The overall fields which constitute this structure, enables to determinate
the nature of the instruction, its parameters and the involved registers. In this
study, we define two attributes in order to represent an instruction: opcode
(instruction code) and inst (instruction name).

Examples:
1. inst = “xor”, “ror”, “rol”, “not”, “and”

2. opcode = “\x90” (nop instruction)

Table 6. Abbreviation of formulae.

⊥ ≡ ¬>
(φ1 ∧ φ2) ≡ ¬(¬φ1 ∨ ¬φ2)
(φ1 → φ2) ≡ (¬φ1 ∨ φ2)
(φ1 ↔ φ2) ≡ ((φ1 → φ2) ∧ (φ2 → φ1))
F (φ) ≡ (>Uφ)
G(φ) ≡ (¬F (¬φ))
AG(φ) ≡ ¬EF (¬φ)
AF (φ) ≡ ¬EG(¬φ)
EF (φ) ≡ E(>Uφ)
A(φ1Uφ2) ≡ (¬E(¬φ2U(¬φ1 ∧ ¬φ2)) ∧ ¬EG(¬φ2))
A(φ1.φ2) ≡ ¬(E(¬φ1.φ2) ∨ E(φ1.¬φ2))

The semantics of our logic is given in Table 7. It is derived from LTL/CTL-
semantics. Definitions of some notations are given below:

• Satisfaction relations |=φ, |=α, |=θ, |=ψ, and |=β are related to formulae φ, α,
θ, ψ and β (respectively).

Title Suppressed Due to Excessive Length 13

• Label functions Lp, Ln and Li allow to check atomic propositions at packet
level, node level and instruction level (respectively).

• The “.” operator is used to extract a sub-model from a given event (e.g.
e0.CFG means that MCFG model is derived from the event e0 where e is a
Packet event).

Table 7. Semantics.

MPacket

τ |=φ [α] iff τ [0] |=α α
τ |=φ [α].φ iff τ [0] |=φ [α] and τ1 |=φ φ

τ |=φ (φ1Uφ2) iff ∃ j > 0| τ j |=φ φ2 and (∀ 0 6 k 6 j, τk |=φ φ1))
τ |=φ (φ1 ∨ φ2) iff τ |=φ φ1 or τ |=φ φ2

τ |=φ ¬φ iff τ 20 φ

Packet

e0 |=α Ppacket iff Ppacket ∈ Lp(e0)
e0 |=α (α1 ∨ α2) iff e0 |=α α1 or e0 |=α α2

e0 |=α ¬α iff e0 21 α
e0 |=α θ iff e0.CFG |=θ θ

MCFG

MCFG, s0 |=θ≺ ψ � iff s0 |=ψ ψ
MCFG, s0 |=θ E(≺ ψ � .θ) iff MCFG, s0 |=θ≺ ψ � and exists s1, successor

state of s0, such that MCFG, s1 |=θ θ
MCFG, s0 |=θ EG(θ) iff exists a path π = s0s1... and for all i ∈ {0, 1, . . .}

along this path, we have MCFG, si |=θ θ
MCFG, s0 |=θ E(θ1Uθ2) iff exists a path π = s0s1... where MCFG, s0 |=θ θ1Uθ2

along this path (e.g. ∃ j > 0, such that MCFG, sj |=θ θ2
and (∀ 0 6 k 6 j, we have MCFG, sk |=θ θ1))

MCFG, s0 |=θ (θ1 ∨ θ2) iff MCFG, s0 |=θ θ1 or MCFG, s0 |=θ θ2
MCFG, s0 |=θ ¬θ iff MCFG, s0 22 θ

Node

s0 |=ψ Pnode iff Pnode ∈ Ln(s0)
s0 |=ψ (ψ1 ∨ ψ2) iff s0 |=ψ ψ1 or s0 |=ψ ψ2

s0 |=ψ ¬ψ iff s0 23 ψ
s0 |=ψ β iff s0.Inst |=β β

MInst

σ |=β {Pinst} iff Pinst ∈ Li(σ[0])
σ |=β {Pinst}.β iff σ[0] |=β {Pinst} and σ1 |=β β
σ |=β (β1Uβ2) iff ∃ j > 0, σj |=β β2 and (∀ 0 6 k 6 j,

we have σk |=β β1))
σ |=β (β1 ∨ β2) iff σ |=β β1 or σ |=β β2
σ |=β ¬β iff σ 24 φ

Examples. In order to better understand the logic constructs, we give hereafter
examples of formulae, and we show how we can verify them against the model

14 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

given in Fig. 5. The model, used as example, is built up from a network audit
source. It represents sequence of packets and their associated CFG graphs. For the
sake of convenience, we have reported in the model only fields of interest (protocol
and flags fields).

UDP TCP
000011

TCP
010010

TCP
010000 ICMP

P1 P2 P3 P4 P5

CFGCFG CFG CFG CFG

Fig. 5. Model Example

Example 1: Detection of Crafted Packets. Abnormal packets are used by attackers
to probe networks or to crash systems. For example, there are several flag com-
binations that can be classified as abnormal. SYN/FIN is one of these malicious
combinations. Indeed, SYN is used to start connection while FIN is used to end
an existing one. It is suspicious to have these two flags set in conjunction. To
detect such packet, we define the following formula:

φ = F ([((protocol = “tcp”) ∧ (flags = 000011))])

This property allows to verify if there exists a packet (F ([α])) that satisfies the
atomic propositions described by α (TCP packet with the SYN and FIN flags set).
It is clear, that the model given in Fig. 5 satisfies the formula φ (i.e.MPacket |= φ),
since there exists a packet (P3) that fulfills the required conditions.

Note that the example given above do not require disassembly, and therefore the
CFG graph associated with each packet is made up of a single empty node. In the
next example, we show how we can perform a deeper analysis (by disassembling
and inspecting CFG graphs).

Example 2: CFG graph inspection. Suppose that disassembly process generates
for the packet P2 the CFG graph given in Fig. 6. Suppose now that we want to
verify if the formula φ given hereafter is satisfied by our model or not.

φ = F ([((protocol = “udp”) ∧ θ)])
θ = AG(≺ ψ �)
ψ = F ({inst = “int”})

Formula φ allows to verify if there exists an UDP packet (∈ MPacket) which
associated CFG graph contains at each node an int instruction. The first condition
(protocol = “udp”) of the formula φ is satisfied, since the packet P2 fulfills this
condition. Now, we have to verify if the CFG graph (i.e.MCFG model) associated

Title Suppressed Due to Excessive Length 15

with packet P2 satisfies the formula θ. To this end, we need to verify if the formula
ψ is “always” satisfied, which is checked thanks to the AG temporal operator. The
formula ψ allows to verify if the sequence of instructions (represented by MInst

model) at node level, contains an int instruction. This is verified at each node
of the CFG graph associated with packet P2 (see Fig. 6). Therefore, we conclude
that the formula φ is satisfied.

Note that, the formula φ does not characterize a particular attack. It is defined
with the intention to show how we can specify a more elaborated formulae.

je

int

inc

pop

xor

ror

int

int

Fig. 6. CFG graph associated with Packet P2

5 Properties Specification

Now, we are ready to give the specification of properties characterizing polymor-
phic shellcodes.

5.1 Invariant Byte Sequences Detection

Polymorphic shellcode engines are just at their beginning. Some invariant byte
sequences are still observable in the outputs of a given generator. However, these
sequences have generally small sizes and they cannot alone characterize a poly-
morphic code. In the case of Buffer Overflow attacks, the software vulnerability is
usually introduced by means of a protocol request. For instance, in order to suc-
cessfully exploit the “Apache Chunked-Encoding Memory Corruption” vulnera-
bility [1] it is necessary to include in the payload, the header “Transfer-Encoding:
chunked”. Furthermore, an exploit is generally provided with a return adresses
list, which are specific to a given environment (OS/Architecture/Verion of the
vulnerable application). The return address can help to define an attack signa-
ture. For example, in the case of polymorphic code, the three high-weight bytes of
the return address can be used to build attack signature, however the low-weight
bits change from one occurrence to another.

16 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

Formula given hereafter allows to detect invariant byte sequences in polymorphic
Buffer Overflow attacks. As described above, this set comprises invariant exploit
framing, invariant overwrite values and invariant substrings in decipher routine.
The formula is specific to attacks that exploit the “Apache Chunked-Encoding
Memory Corruption” vulnerability in NetBSD systems. It allows to detect mali-
cious payload generated by Clet engine.

F ([(((protocol = “tcp”) ∧(dport = 80)) ∧ (body = X + “Transfer−
Encoding : chunked” + Y + “\x74\x07\xeb” + Z + “\xff\xff\xff”+
T + “\xfa\x0e\x08” + V))])

The flaw “Apache Chunked-Encoding Memory Corruption” is related to HTTP
protocol, which explains the first part of the propriety. The second part allows to
verify if the body field contains the following patterns:

• “Transfer-Encoding: chunked”: invariant exploit framing

• “\x74\x07\xeb”, “\xff\xff\xff” and “\xfa\x0e\x08”: invariant substrings
in Clet’s decipher routines.

• “\xfa\x0e\x08”: three high-weight bytes of the return address 0x080efa00
(overwrite value related to NetBSD systems).

5.2 FAKE NOP Detection

As described in Section 2, the FAKE NOP are added at the beginning of the
payload to compensate the return address estimation error. The FAKE NOP sec-
tion size depends on the vulnerability, but it is generally quite large (more than
hundred instructions). A large sequence of consecutive FAKE NOP instructions is
one of the characteristics of polymorphic shellcodes. Several solutions [16][40][44]
base their detection on the FAKE NOP. Thanks to our logic, it is also possible to
specify a property allowing to detect FAKE NOP instructions:

F ([((protocol = “tcp”, “udp”) ∧ (≺ G({opcode = S}) � ∧ ≺ (size > 100) �))])

with S = “\x04”, “\x05”, “\x06”, “\x0c”, “\x0d”, etc., (set of FAKE NOP in-
structions defined in ecl-poly list).

This formula allows to detect if there exists a packet, where the first node of its
associated CFG graph contains only instructions belonging to the set S. Note
that many tools such as FNORD [40] base their detection on the FAKE NOP list
issued from the source code of ADMmutate engine. This list is not complete and
contains only one-byte instructions. In our specification, we use the FAKE NOP
list (set S) defined in ecl-poly tool. This list extends the one used by ADMmutate
engine, and includes several-bytes instructions. Thus, the formula given above
allows to detect (one/several)-bytes of FAKE NOP instructions sequence.

Note however, that some Buffer Overflow attacks do not require FAKE NOP zone.
In such attacks, the malicious code is stored in memory above the return address

Title Suppressed Due to Excessive Length 17

(above the EIP pointer in Fig. 1). Then, this address is overwritten with a one
that points to a jmp %esp instruction. Such kind of attacks can be detected
by adding in our formula the list of return addresses which point to jmp %esp
instruction. This list can be extracted, for instance, from the Metasploit database.

5.3 Decipher Routine Detection

CFG graph representation of several instances of polymorphic shellcodes gener-
ated by the same engine (e.g. Clet), reveals that the structure of the decipher
routine is practically the same for a given input (e.g. /bin/sh shellcode). CFG
nodes are interconnected to each other in the same way. Moreover, these nodes
often contain the same instruction classes (see Table 9). As we will see in Sec-
tion 7, 97% of instances generated by Clet engine share the same structure given
in Fig. 7. This figure represents the decipher routine structure generated by Clet
engine for a given input (/bin/sh shellcode).

jmp

jmp

call

pop

mov
xor

mov

mov

sub

sub

sub

rol
ror
xor
add

inc

dec
dec
dec

je

...

Node 4

Node 1

Node 2

Node 3

Node 5
Call instruction

Jmp instruction

Sstack instructions

Sarith instructions

Slogic instructions

Strans instructions

Sbranc instructions

Others instructions ...

Fig. 7. Example : Decipher routine structure of Clet engine

To detect the decipher routine specific to Clet engine, we define the property given
hereafter. Table 8 explains the meaning of each part of the formula.

18 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

F ([((protocol = “tcp”, “udp”) ∧ EF (E(≺ F ({opcode = “\xeb”}) � .
E(≺ F ({opcode = “\xe8”}) � .E(≺ ((F ({inst = Sarith, Slogic}) ∧
F ({inst = Strans})) ∧ F ({inst = Sstack})) � .E(≺ (((F ({inst = Sarith, Slogic}) ∧
F ({inst = Strans})) ∧ F ({inst = Sbranc})) ∧ (id = X)) � .
E(≺ F ({opcode = “\xeb”}) � . ≺ (id = X) �)))))))])

This property allows to verify if there exists a path (∈ MCFG) along which we
have, somewhere, the following sequence of nodes:

1. A node containing the instruction jmp,

2. A node containing the instruction call,

3. A node containing “stack” instructions (e.g. pop), logic/arithmethic instruc-
tions (e.g. xor) and data transfert instructions (e.g. mov),

4. A node containing logic/arithmethic instructions and data transfert instruc-
tions. This node ends with conditional branch instruction (e.g. je), leading to
either node 5, or to node 6 which is the most often invalid (contains invalid
instructions), and

5. A node containing the instruction jmp leading to the node 4.

More precisely, we are looking for the sequence of nodes given by:

πclet = Node1, Node2, Node3, Node4, Node5, Node4

Table 8. Property characterizing the decipher routine of Clet engine.

Formula Comments
φ = F ([α]) Verify if there exists a packet (∈ MPacket)

that satisfies α
α = (α1 ∧ α2)

α1 = (protocol = “tcp”, “udp”) Only tcp and udp packets are
inspected

Verify if there exists a path π ∈ MCFG
α2 = EF (θ) along which θ is satisfied

at a given moment in the future
θ = E(≺ ψ1 � .E(≺ ψ2 � .E(≺ ψ3 � . Verify if the path π contains
E(≺ ψ4 � .E(≺ ψ5 � . ≺ ψ6 �))))) the sequence of nodes πclet

Verify if there exists an instruction ∈ MInst (model
ψ1 = F (p1) associated with the 1st node of the sequence πclet

(i.e. πclet[1])) that satisfies the atomic proposition p1
p1 = {opcode = “\xeb”} jmp instruction (jmp [byte])

ψ2 = F (p2) Verify if there exists an instruction ∈ MInst

(model associated with πclet[2]) that satisfies p2
p2 = {opcode = “\xeb”} call instruction (call [dword])

ψ3 = ((F (p3) ∧ F (p4)) ∧ F (p5)) Verify if p3, p4 and p5 are satisfied in MInst

(model associated with πclet[3])
p3 = {inst = Sarith, Slogic} See table 9

p4 = {inst = Strans} See table 9
p5 = {inst = Sstack} See table 9

ψ4 = (((F (p3) ∧ F (p4)) ∧ F (p6)) Verify if p3, p4 and p6 are satisfied in MInst

∧ (id = X)) (model associated with πclet[4])
p6 = {inst = Sbranc} See table 9

ψ5 = F (p1) Verify if p1 is also satisfied in MInst

(model associated with πclet[5])
ψ6 = (id = X) Loop Detection. The jmp of node 5

leads to node 4

Title Suppressed Due to Excessive Length 19

We define hereafter the properties characterizing the decipher routines of ADM-
mutate and JempiScode engines, in a similar manner to the Clet engine.

Property characterizing the decipher routine of ADMmutate engine can be spec-
ified as following:

F ([((protocol = “tcp”, “udp”) ∧ EF (E(≺ F ({opcode = “\xeb”}) � .
E(≺ F ({opcode = “\xe8”}) � .E(≺ (F ({inst = “xor”}) ∧
F ({inst = Strans, Sstack})) � .E(≺ ((F ({inst = “xor”}) ∧
F ({inst = Sarith})) ∧ F ({inst = Sbranc})) � . ≺ F ({opcode = “\xeb”}) �))))))])

Property characterizing the decipher routine of JempiScode engine can be speci-
fied as following:

F ([((protocol = “tcp”, “udp”) ∧ EF (E(≺ F ({opcode = “\xeb”}) � .
E(≺ F ({opcode = “\xe8”}) � .E(≺ (F ({inst = Sstack}) ∧ F ({inst = Sarith})) � .
E(≺ F{inst = Sarith} ∧ F{inst = Sbranc} � . ≺ F ({opcode = “\xeb”}) �))))))])

The previously specified properties are resilient to common obfuscation techniques
used by hackers:

• Resilience to instruction substitution (up to a certain limit): the simple fact
of replacing, for example, inc %eax with sub $0xffffffff, %eax will have no
impact on formulae, given that sub, inc ∈ Sarith.

• Resilience to instruction insertion: following execution trace during disassem-
bly allows us to exclude junk instructions.

• Resilience to register renaming: the arguments of instructions are not taken
into account.

• Resilience to code transposition: the order of instructions at node level is not
taken into account.

Table 9. Instruction Classes

Instructions Class

Sarith = inc, sub, add, dec Arithmetic

Slogic = xor, ror, rol, and, not Logic

Strans = mov, xchg Data Transfert

Sstack = push, pop Stack

Sbranc = je, jne, jz, loop, Conditional
loopne, loopnz Branch

Classes of instructions shown in table 9 help to counteract the metamorphism.
However, an attacker can use semantically equivalent instructions from different
classes. For instance, mov %eax, %ebx (class Strans) can be substituted with
push %eax; pop %ebx (class Sstack). For this scenario, the end-user can define

20 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

and adapt its own instruction classes according to the different combinations
observed in the source code of a given polymorphic engine. Note that there is few
substitutions involving instructions belonging to different classes. In certain cases,
it is even impossible to replace an instruction with a semantically equivalent one
(e.g. int instruction).

6 Implementation: The tool IDS-Logic

6.1 Overview

Fig. 8. IDS-Logic Interface.

In this section we give a brief overview of our IDS prototype, written in Java and
called IDS-Logic, which is based on the proposed logic. The tool IDS-Logic has a
simple and user-friendly interface allowing the end-user to specify his properties
and their associated parameters (see Fig. 8). As any language, IDS-Logic provides
a compiler that allows mainly to check the syntax of the specified properties.
IDS-Logic is also endowed with a model checker allowing to verify the specified
properties against a model built up from the audit trail. IDS-Logic is available
at [43], from where it is possible to download the source code.

Title Suppressed Due to Excessive Length 21

6.2 Architecture

The architecture of our IDS prototype is given in Fig. 9. Hereafter, we give a
description of its main components.

Properties Specification. Properties are specified through “.logic” files which
have the following structure:

DISAS(pos)
VAR
type1 var1 = value1;
type2 var2-var3-var4;
SPEC
formula1 : title1;
formula2 : title2;
. . .
formulan : titlen;

The proposition DISAS is related to disassembly. The clause VAR 1 allows the
user to define his variables. We define two types of variables: type1 is similar
to “#define” in C programming language; variables of type2 are used in atomic
propositions (e.g. protocol = var1). Properties are specified through the reserved
word SPEC. A name can be attributed to a property so that it could be referred
later in other formulae or in the output of the analysis.

Compilation: Syntactical Checking. Syntactical checking consists to ensure
that the properties are specified while respecting the clauses defined above. It
ensures also that the specified formulae are well formed (i.e. properties respect
the logic grammar). This procedure is realized by the use of Flex and Bison
tools [4].

Properties Transformation. If the specified properties are free of syntax errors,
they will be transformed according to the abbreviations given by Table 6. The
idea behind these abbreviations is to implement only a few numbers of operators
(those of the proposed logic). The rest can be derived from them. For instance,
it is not necessary to implement the ∧ operator, since it can be derived from the
disjunction (∨) and negation (¬) operators.

Model Construction. This component allows to build up the model defined in
Section 3 from an audit file (“.net” file). First, the audit file is parsed in order
to construct the sequence of packets (i.e. MPacket model). Then, if disassembly
is enabled (i.e. CFG(pos), pos > 0), the body of each packet (∈ MPacket) is
disassembled in order to construct the CFG graph (MCFG model). Note that

1 Clause VAR is optional

22 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

IDSs are prone to real time constraints which result in the number of packets
analyzed per second. Disassembly is an expensive operation that can slow down
the IDS treatments. For that purpose, it is imperative to find a solution that
optimize the disassembly process. The disassembler used in APE allows to solve
this problematic. Their disassembler is based on a dictionary of instructions. We
follow a similar approach for disassembly.

Execution: Formal Checking. This is the main part of the system. It imple-
ments the satisfaction relation “|=” of the logic semantics defined in Table 7. The
model checker takes a model M (built up from the audit trail) and a formula φ
(specified by the end-user), and verify whether M |= φ or not. At the end of this
stage, the system gives us the detection results: “true” indicates that the analyzed
flow contains the attack-evidence described by the specified formula.

Properties
Specification

Audit Trail Logic : Syntax

Logic : Semantics

Properties
Transformation

Execution
Formal Checking

Instructions
Dictionary

Disassembly DISAS?

Model
Construction

OK

Syntactical
Checking

Compilation
Rules Lex & Yacc

Logic : Macros

...
(φ1 ∧ φ2)≡ ¬ (¬ φ1 ∨ ¬ φ2)

Error

Yes

No

TRUE : Attack FALSE : ¬ Attack

Fig. 9. IDS-Logic Architecture.

7 Properties Evaluation

In this section, we evaluate the efficiency of each property in terms of false positives
and false negatives. To this end, we have to define first datasets of network traffic.
Publicly available datasets (e.g. MIT Lincoln Lab datasets [6]) are a tremendous
asset for the intrusion detection community. However, these datasets have some
problems and have been criticized by many researchers. For instance, McHugh
pointed out in [34] that the background traffic was generated using too simple
models, and if real background traffic was used, it would produce a higher rate of
false positives. Moreover, these datasets are not adapted to our study, since we
are interested only in polymorphic Buffer Overflow attacks. For all these reasons,
we have chosen to define our own datasets2.
2 The datasets are available upon request to the authors

Title Suppressed Due to Excessive Length 23

7.1 False Positives/True Positives

Datasets. To evaluate our properties in terms of false/true positives, we have
defined two datasets.

• HTTP traffic: this first dataset was given to us by the Higher School of Elec-
tricity (Supelec Rennes). This evaluation set contains TCPdump data consist-
ing of only HTTP requests (102582 packets). This traffic was collected over
two weeks, and was verified to be free of polymorphic attacks. This dataset
was used exclusively to evaluate the Invariant Byte Sequences property.

• ELF binaries: we have sent via FTP the content of /bin, /usr/bin, /sbin, and
/usr/sbin directories of a Fedora Core 6 Linux distribution (fresh installa-
tion). Then, we have captured all the resultant FTP traffic (246157 packets).
ELF binaries were sent to a local FTP sevrer (running on the localhost ma-
chine), which is connected to any network. Thus, the resultant FTP traffic is
free of attacks. This dataset was used to evaluate the properties that require
disassembly. The use of such dataset is motivated by the fact that ELF bina-
ries contain executable code, and therefore they are most likely to give false
alarms.

Then, we have developed a Java application 3 (using the jpcap package) in order
to translate data from TCPdump format to a more simplistic one:

protocol | saddr | sport | daddr | dport | flags | frags | body

Results. Table 10 shows the obtained results. No false positives were reported
during the evaluation of the Invariant Byte Sequences Property. The FAKE NOP
property generated many false positives (48 analyzed packets have raised an
alarm). This implies that certain solutions which base their detection only on
the FAKE NOP can be inefficient. Finally, no false positives were reported during
the evaluation of the Decipher Routine Properties. Several factors can explain
this result:

• The defined properties are very specific.

• It is difficult to find ELF binaries that share common structural characteristics
(same CFG structure, same instruction classes at node levels) with polymor-
phic shellcode engines.

• ELF binaries were fragmented into several packets during their transmission
via FTP. Fragmentation had led, in certain cases, to the termination of the dis-
assembly process (e.g. address of a control flow instruction is out of bounds).

• Finally, our disassembler does not support the whole instruction set of the
Intel manual [3] (e.g. MMX and SIMD instructions are not supported). This
perhaps led to invalid instructions during disassembly.

3 This tool is available at [43]

24 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

Table 10. Number of False/True Positives.

Property False Positive True Positive

Invariant Byte Sequences 0 102582

FAKE NOP 48 246109

Clet Decipher Routine 0 246157

ADMmutate Decipher Routine 0 246157

JempiScode Decipher Routine 0 246157

7.2 False Negatives

Datasets. To evaluate our properties in terms of false/true negatives, we have
developed some shell scripts allowing to generate sanitized audit files (i.e. “.net”
files) in the format of our IDS prototype. The content of these audit files changes
depending on the property to be evaluated:

• Invariant Byte Sequences Property: a set of chunked HTTP requests that
contain Clet decipher routine.

• Decipher Routine Properties: three sets of packets containing each one 100
outputs generated by Clet, ADMmutate and JempiScode engines (respec-
tively).

• FAKE NOP Property : a mix of FAKE NOP generated by ADMmutate and
Clet engines.

Results. Table 11 shows the obtained results. No false negatives were reported
during the evaluation of the Invariant Byte Sequences Property. This implies that
the invariant byte sequences scattered over the malicious code are sufficient to
characterize polymorphic codes generated by Clet engine. This illustrates some
weaknesses of this engine.

Table 11. Number of False/True Negatives.

Property False Negative True Negative

Invariant Byte Sequences 0 100

FAKE NOP 0 100

Clet Decipher Routine 3 97

ADMmutate Decipher Routine 4 96

JempiScode Decipher Routine 0 100

We obtained a detection rate of 100% for the FAKE NOP property. This result
was expected. Indeed, the property was specified using a FAKE NOP list that
includes all instructions used by ADMmutate and Clet engines. A large number
of Clet engine instances (97 out of 100) were detected by the Decipher Routine
Property. For the three non-detected instances, the CFG structure was different
from the one given by Fig. 7. This was due to the presence of branch instructions

Title Suppressed Due to Excessive Length 25

(i.e. Sbranc instructions) in the node corresponding to the ciphered shellcode (node
6 in Fig. 7). As consequences, some nodes of the CFG graph were splitted into
two blocks. In that case, the property is not satisfied any more. Four instances
of ADMmutate engine was non-detected for the same reasons. This does not
happened during the evaluation of JempiScode Decipher Routine Property, where
we have obtained a detection rate of 100%.

8 Related Work

Several preventive techniques have been proposed during the last years to pre-
vent from Buffer Overflow attacks. Some of them tried to act at kernel level (e.g.
PAX [10], Openwall [9]) by patching them, others prefer modifying compilers
(e.g. StackGuard [22], Stack Shield [13]), while others move toward using dy-
namic libraries (e.g. Libsafe [19]). Although the significant contributions of these
preventive techniques, they can be evaded [18, 21, 23, 45] and the problem is far
from being resolved efficiently.

Polymorphic Buffer Overflow attacks are more challenging, and several techniques
have been proposed in the literature to detect them. These detective techniques
can be classified into two approaches: misuse-based approach and anomaly-based
approach. Regarding the former, protection is usually provided by parsing net-
work traffic in order to detect matches with previously defined malicious patterns.
Misuse-based IDSs generally produce low false positives rates, but they are not
able to detect novel attacks. In contrast, anomaly-based approaches base their
detection on a profile of normal network traffic, often built up using Data Mining
techniques. Anomaly-based IDSs are able to detect novel attacks, but generally
have a high rate of false positives.

Almost all proposed techniques fall into the misuse-detection field. These tech-
niques can be classified into three categories: FAKE NOP (e.g. FNORD, APE,
STRIDE), Invariant Byte Sequences (e.g. Polygraph [35]) and Decipher Rou-
tine [31] detection systems.

FNORD, APE and STRIDE base their detection on the FAKE NOP. FNORD
is the most basic one. It maintains a list of one-byte FAKE NOP instructions
(ADMmutate list) and applies pattern matching techniques. It is possible to by-
pass FNORD by using several-bytes FAKE NOP instructions. APE and STRIDE
are more advanced tools since they perform code disassembly. For instance, APE
disassembles the code from randomly chosen positions and reports each time the
number of valid instructions: MEL (Maximum Execution Length). If the MEL
value is greater than a fixed threshold (MEL > 35), then an alert is raised. APE
and STRIDE allows to detect (one/several)-bytes FAKE NOP instructions. Note
however that some Buffer Overflow attacks do not require FAKE NOP instruc-
tions at all, and therefore they cannot be detected by these solutions.

Polygraph uses a set of byte sequences (e.g. exploit framing, overwrite values,
invariant substrings in decipher routine), that are common to different instances
of a given polymorphic shellcode engine, in order to automatically generate sig-
natures allowing to detect such patterns. Polygraph generates three categories of

26 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

signatures: Conjunction signatures, Token-subsequence signatures and Bayes Sig-
natures. Conjunction signatures allow to check if the analyzed flow contains, in any
order, the patterns described by these signatures, whereas in Token-subsequence
signatures, the order of patterns is taken into account. Finally, Bayes signatures
consist in weighting patterns.

Another interesting observation is that there is also structural similarities (e.g.
invariance of the decipher routine structure) between mutations of a polymorphic
shellcode. Christopher Krügel el al. exploited this fact in [31] in order to automat-
ically generate fingerprints that characterize invariant structures of polymorphic
shellcodes. Fingerprints generation involves three processes. First, a polymorphic
shellcode is disassembled and abstracted by a CFG graph. Then, all connected
k-subgraphs (subgraph with k nodes) are extracted from the CFG graph. Finally,
a fingerprint is generated for each subgraph. Fingerprints record how k-subgraph
nodes are interconnected to each other, and which classes of instructions (e.g.
arithmetic instructions) are contained at each node.

Thanks to the proposed logic, we were able to specify properties which are equiv-
alent to the signatures generated by the detective techniques detailed above. In-
deed, properties defined in Section 5 are formal specification of these techniques.

Finally, to conclude with misuse-based approches in the field of polymorphic code
detection, we can cite the formal approach proposed in [25]. In this approach, code
mutation techniques such as polymorphism and metamorphism are formalized by
means of formal grammars. A grammar is defined by an alphabet (e.g. instruc-
tions) and a rewriting system. The idea behind this grammar is to define a formal
language that represents the different forms that a (polymorhic/metamorphic)
code can take with respect to this grammar. The detection technique is based
on a language decision problem which consists in determining whether a given
mutated code is an instance of the formal language or not.

Regarding anomaly-based approaches, there is only few works [36, 37] that fo-
cus mainly on polymorphic shellcodes. In these works, Data Mining methods are
used as a learning process which is performed over a set of samples (positives
and negatives datasets). For instance, in [37] authors suggest the use of Neural
Networks as training process, whereas in [36] authors propose to use the Markov
Chains. Note that, Clet engine is endowed with a spectrum analysis mechanism
which was designed in order to defeat Data Mining methods. However, evaluation
results obtained in [36, 37] show a detection rate of 100% for Clet engine with a
low rate of false positives.

9 Conclusions

Buffer Overflow attacks are very powerful. Allied to the polymorphism power,
their detection becomes very difficult. In view of this problematic, which consti-
tutes a real challenge, we have proposed in this paper a new formal language al-
lowing the specification of a large variety of properties characterizing polymorphic
shellcodes. Simple and expressive, the proposed language is the fruit of temporal

Title Suppressed Due to Excessive Length 27

logics (LTL and CTL) combination. This point has been a main goal during the
conception phase. Firstly, the simplicity in order to allow the end-user to easily
translate his observations into formal specification. Secondly, the expressiveness
in order to specify a large variety of polymorphic shellcode properties. In addi-
tion, the proposed language is not limited to the characterization of polymorphic
shellcodes, but can be used to other ends such as the specification of formulae
characterizing a multitude of TCP/IP based attacks (e.g. Crafted Packets, Frag-
ment Attacks). Moreover, the worms spreading over Internet are frequently coded
in assembler, and polymorphism/methamorphism techniques are often used by
virus authors. The language that we propose can then be used to reflect the be-
havior of such codes. For example, many worms use the mail as spreading means.
These worms contain fragments of code, allowing among others, to get the content
of the address book (next targets of the virus). The structure of these fragments
are often unchanged for a given virus family. Therefore, the invariant part can
be characterized by properties. Finally, in order to validate our work, we have
developed an IDS prototype that implements the proposed logic. The results of
the evaluation process show a good tradeoff between false positives and false neg-
atives.

References

1. CAN-2002-0392 - apache chunked-encoding memory corruption vulnerability.
http://www.securityfocus.com/bid/5033/discuss.

2. Flawfinder. http://www.dwheeler.com/flawfinder.

3. IA-32 intel architecture software developer’s manual - instruction set reference.
http://www.intel.com/design/pentium4/manuals/index new.htm.

4. The lex & yacc page. http://dinosaur.compilertools.net/.

5. Metasploit. http://www.metasploit.com/.

6. MIT lincoln laboratory. http://www.ll.mit.edu/.

7. National vulnerability database. http://nvd.nist.gov/statistics.cfm.

8. Nessus. http://www.nessus.org.

9. Opewall. http://www.openwall.com/.

10. PAX. http://pax.grsecurity.net/docs/index.html.

11. Rats. http://www.securesoftware.com.

12. Retina. http://www.eeye.com.

13. Stack Shield. http://www.angelfire.com/sk/stackshield/.

14. US-CERT. http://www.us-cert.gov/.

15. Kamel Adi, Mourad Debbabi, and Mohamed Mejri. A new logic for electronic
commerce protocols. Theoretical Computer Science, 291(3):223–283, 2003.

16. P. Akritidis, Evangelos P. Markatos, Michalis Polychronakis, and Kostas G. Anag-
nostakis. STRIDE: Polymorphic sled detection through instruction sequence anal-
ysis. In SEC, pages 375–392, 2005.

17. Aleph1. Smashing the stack for fun and profit.
http://www.phrack.org/issues.html?issue=49&id=14.

18. Christophe Bailleux and Christophe Grenie. Protections contre l’exploitation des
débordements de buffer - bibliothèques et compilateurs. http://www.miscmag.com/.

19. Arash Baratloo, Navjot Singh, and Timothy Tsai. Libsafe: Protecting critical ele-
ments of stacks.

28 Mehdi Talbi, Mohamed Mejri, and Adel Bouhoula

20. Philippe Beaucamps and Eric Filiol. On the possibility of practically obfuscating
programs towards a unified perspective of code protection. Journal in Computer
Virology, 3(1):3–21, 2007.

21. Bulba and Kil3r. Bypassing Stackguard and Stackshield.
http://www.phrack.org/issues.html?issue=56&id=5.

22. Crispin Cowan, Calton Pu, Dave Maier, Heather Hintony, Jonathan Walpole, Peat
Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang. Stackguard:
automatic adaptive detection and prevention of buffer-overflow attacks. In SSYM.
USENIX Association, 1998.

23. Solar Designer. Getting around non-executable stack (and fix).
http://www.securityfocus.com/archive/1/7480.

24. Theo Detristan, Tyll Ulenspiegel, Yann Malcom, and Mynheer Super-
bus Von Underduk. Polymorphic shellcode engine using spectrum analysis.
http://www.phrack.org/issues.html?issue=61&id=9.

25. Eric Filiol. Metamorphism, formal grammars and undecidable code mutation. In-
ternational Journal of Computer Science, 2(1):7075, 2007.

26. Meriam Ben Ghorbel, Mehdi Talbi, and Mohamed Mejri. Specification and detection
of TCP/IP based attacks using the ADM-logic. In ARES, pages 206–212. IEEE
Computer Society, 2007.

27. Yuri Gushin. Nids polymorphic evasion - the end? http://www.ecl-
labs.org/papers.html.

28. K2. Admmutate. http://www.ktwo.ca/.

29. Oleg Kolesnikov and Wenke Lee. Advanced polymorphic worms: Evading IDS by
blending in with normal traffic, 2004.

30. Saul A. Kripke. Semantical considerations in modal logic. Acta Philosophica Fenica,
16:83–94, 1963.

31. Christopher Krügel, Engin Kirda, Darren Mutz, William K. Robertson, and Gio-
vanni Vigna. Polymorphic worm detection using structural information of executa-
bles. In RAID, pages 207–226, 2005.

32. Pierre Luc Lespérance. Detecting variants of known attacks using temporal logic.
In WPTACT, 2005.

33. Jacques Louis Lions. ARIANE 5: Flight 501 failure.
http://sunnyday.mit.edu/accidents/Ariane5accidentreport.html.

34. John McHugh. Testing intrusion detection systems: a critique of the 1998 and 1999
darpa intrusion detection system evaluations as performed by lincoln laboratory.
ACM Transactions on Information and System Security, 3(4):262–294, 2000.

35. James Newsome, Brad Karp, and Dawn Xiaodong Song. Polygraph: Automatically
generating signatures for polymorphic worms. In IEEE Symposium on Security and
Privacy, pages 226–241, 2005.

36. Udo Payer and Stefan Kraxberger. Polymorphic code detection with GA optimized
markov models. In Communications and Multimedia Security, pages 210–219, 2005.

37. Udo Payer, Peter Teufl, and Mario Lamberger. Hybrid engine for polymorphic
shellcode detection. In Klaus Julisch and Christopher Krügel, editors, DIMVA,
volume 3548 of Lecture Notes in Computer Science, pages 19–31. Springer, 2005.

38. Gordon D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, University of Aarhus, 1981.

39. Rix. Writing IA32 alphanumeric shellcodes.
http://www.phrack.org/issues.html?issue=57&id=15.

40. Dragos Ruiu. Snort preprocessor - multi-architecture mutated NOP sled detector.

41. Matias Sedalo. JempiScode. http://goodfellas.shellcode.com.ar/proyectos.html.

Title Suppressed Due to Excessive Length 29

42. Colin Stirling. Modal and temporal logics for processes. In Proceedings of the VIII
Banff Higher order workshop conference on Logics for concurrency : structure versus
automata, pages 149–237. Springer, 1996.

43. Mehdi Talbi. IDS-logic. http://www.rennes.supelec.fr/ren/perso/mtalbi/outils/IDS-
Logic.tar.gz.

44. Thomas Toth and Christopher Krügel. Accurate buffer overflow detection via ab-
stract payload execution. In RAID, pages 274–291, 2002.

45. Rafal Wojtczuk. The advanced return-into-lib(c) exploits: PAX case study.
http://www.phrack.org/issues.html?issue=58&id=4.

